OPTICS应用案例系列
18/52

18+86 (0755) 2967 5435 • 爱特蒙特光学 (深圳) 有限公司光学镀膜由薄膜层组合而成,它会产生干涉效应来改变光学系统的透射或反射性能。光学镀膜的性能取决于层数、每层的厚度和不同层之间的折射率。精密光学中常见镀膜类型有:增透膜(AR)、高反射(镜)膜、分光镜膜和滤光片膜(短波通,长波通,陷波等)。增透膜适用于大多数折射光学件,可以增大光通量并减少不必要的反射。高反射膜可以在单个波长或某段波长范围内提供最大反射,多用于反射镜。分光镜膜用于将入射光分为透射光和反射光输出。滤光片镀膜适用于大量生命科学和医学应用,能够以特定波长透射、反射、吸收或衰减光。爱特蒙特光学还可以提供各种定制镀膜,满足您的应用需求。光学镀膜通常适用于特定的入射角和特定的偏振光,例如S偏振,P偏振或随机偏振。如果射入镀膜的光线角度与其设计入射角不同,将导致性能显着降低,如果入射角度与设计入射角偏差非常大,可能会导致镀膜功能完全丧失。类似地,使用与设计偏振光不同的偏振光会产生错误的结果。光学镀膜由沉积电介质和金属材料制作而成,如交替薄膜层中的五氧化二钽(Ta2O5)和/或氧化铝(Al2O3)。为使应用中的干涉达到最大或最小,镀膜通常具有四分之一波长光学厚度(QWOT)或半波光学厚度(HWOT)。这些薄膜由高折射率和低折射率层交替制成,从而诱发干涉效应。请参阅图1,宽带增透膜设计示例。镀膜理论镀膜控制穿过光学干涉机制的反射光和透射光。当两个光束沿着同步路径传输及其相位匹配时,波峰值的空间位置也匹配并将结合创建较大的总振幅。当光束为反相位(180°位移)时,其叠加会导致在所有峰值的消减效应,导致结合的振幅降低。这些效应被分别称为建设性和破坏性的干涉。下列方程式1 - 4所示说明多层薄膜结构总反射率的关系。光的波长和入射角通常是指定的,折射率和层厚度则可以有所不同以优化性能。上述的任何更改将会影响镀膜内光线的路径长度,并将在光透射时改变相位值。这种效应可简单地通过单层增透膜例子说明。当光传输穿过系统时,在镀膜任一侧的两个接口指数更改处将出现反射。为了使反射最小化,当两个反射部分在第一界面处结合时,我们希望它们之间具有180°相位差。这个相位差异直接对应于aλ/2位移的正弦波,它可通过将层的光学厚度设置为λ/4获得最佳实现。请参阅说明此概念的图2。 折射率不仅影响光路长度(以及相位),也影响每个界面的反射特性。反射率通过菲涅尔公式(方程式5)定义,其反射率与界面两边材料的折射率之差息息相关。必须考虑到的最后一个参数是膜层的入射角。如果光的入射角改变,则每层的内角和光程长度都将受到影响; 这将影响反射光束的相位变化量。使用非一般入射时,S偏振光和P偏振光将从每个界面互相反射,这将导致两个偏振光具有不同的光学性能。偏振分光计就是基于这一原理设计的。镀膜技术蒸发沉积在蒸发沉积时,真空室中的源材料受到加热或电子束轰击而蒸发。蒸气冷凝在光学表面上。在蒸发期间,通过精确控制加热,真空压力,基板定位和旋转可以制造出具有特定厚度的均匀光学镀膜。蒸发具有相对温和的性质,会使镀膜变得松散或多孔。这种松散的镀膜具有吸水性,改变了膜层的有效折射率,将导致性能降低。通过离子束辅助沉积技术可以增强蒸发镀膜,在该过程中,离子束会对准基片表面。这增加了源材料相对光学表面的粘附性,产生更多应力,使得镀膜更致密,更耐久。离子束溅射(IBS)在离子束溅射(IBS)时,高能电场可以加速离子束。 这种加速度使得离子具有显着的动能。在与源材料撞击时,离子束会将靶材的原子“溅射”出来。这些被溅射出来的靶材离子(原子受电离区影响变为离子)也具有动能,会在与光学表面接触时产生致密的膜。IBS是一种精确的,重复性强的技术。图1:在三层BBAR镀膜设计中,选择合适的四分之一波长厚度和半波厚度的镀膜,可以增加透射率,降低反射损失图2:个反射光束之间具有180°相位差,形成相消干涉,因此不会产生反射光束光学镀膜简介(5)R =n1 + n2n1 - n2()2Incident BeamR1R2nonfnsR2 – R1 = λ/2λ/4R1:R2:Y =BCR =η0 + Yη0 - Y()η0 + Yη0 - Y()(3)(4)(1)(2)δp =λ2πNpdp cosθp=CB[]ηη1[]iηp sin δpi sin δp / ηp cos δpcos δpqp=1[]Πq: 层数δ: 相位项η: 层的光学导纳Np: 复杂的折射率dp: 层的物理厚度λ: 波长θp: 入射角Y: 堆叠的光学导纳R: 堆叠的反射率

元のページ  ../index.html#18

このブックを見る